

Two Complementary Approaches toward 2-Alkoxy Carboxylic Acid Synthesis from 1,3-Dioxolan-4-ones

Leonard L. Winneroski and Yanping Xu*

Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285

xu_yanping@lilly.com

Received February 6, 2004

Two complementary approaches to prepare 2-alkoxy carboxylic acids have been developed. Reductive ring opening of various 1,3-dioxolan-4-ones using TiCl₄/Et₃SiH or 'BuMgCl affords the desired 2-alkoxy carboxylic acid in moderate to excellent chemical yield without loss of optical purity.

Introduction

2-Alkoxyphenylpropionic acids 1 have been recognized as important synthetic targets in the pharmaceutical industry.1 Various synthetic approaches to prepare 1 have been reported in the literature (Scheme 1). The most widely utilized method is alkylation of a 2-hydroxy acid or ester (method A, Scheme 1). Although this method is efficient for straight-chain alkyl halides, secondary and tertiary alkyl halides are prone to elimination under the basic alkylation conditions leading to low yields, long reaction times, and loss in ee due to α -epimerization. Other methods which afford the 2-alkoxyphenylpropionic acids 1 as a racemic mixture include Heck coupling² and Wadsworth-Emmons³ reaction (method B, Scheme 1) or the rhodium-mediated alcohol insertion of 2-diazocarboxylate⁴ (method C, Scheme 1).

In addition to the methods listed above, the synthesis of isopropoxyphenylacetic acid 3 from 2,2-dimethyl-5phenyl[1,3]dioxolan-4-one 2 was reported in 1942 by Fuson et al.⁵ The treatment of 2 with tert-butylmagnesium chloride afforded isopropyl ether 3 in 77% yield (Scheme 2). It was noted that isobutylene was generated during the course of this reaction. However, no optical information was available since racemic 2 was studied and the detailed mechanism was not disclosed. Herein,

we report our investigation of this reaction and demonstrate its synthetic utility and limitations. A complimentary approach using a Lewis acid-catalyzed reductive ring opening of [1,3]dioxolan-4-ones to circumvent these limitations is also discussed.

Results and Discussion

Optically pure (*S*)-5-benzyl-2,2-dimethyl[1,3]dioxolan-4-one **4a** (Scheme 3) was prepared and then treated with a commercial solution (Aldrich) of 3 equiv of 'BuMgCl in Et₂O for 30 min at room temperature to afford (S)-2isopropoxy-3-phenylpropionic acid 1a in 92% yield with > 98% ee!

The reaction was thought to occur through (1) electron transfer,⁶ (2) metal hydride reduction,⁷ or (3) a concerted process via a six-membered transition state. Treatment of 4a with either SmI₂, Zn/HOAc, or MgH₂ (purchased from Aldrich or generated in situ) afforded no desired product **1a** (Scheme 3). These results suggested that an electron transfer or a metal hydride mediated pathway are not involved in this transformation.

These findings led us to investigate the possibility of a concerted pathway, in which the C-O bond breaking and C-H bond formation occur simultaneously. From the supposed transition state (Figure 1), one can anticipate a strong steric interaction between one methyl group of ^tBuMgCl and R¹ (in **A**) and/or R² (in **B**) groups. Under this assumption, it is anticipated that the reaction yield will be significantly attenuated with an increase in the steric bulk of the R^1 and R^2 groups.

To test this hypothesis, a variety of [1,3]dioxolan-4ones **4a-i** were prepared via an acid-catalyzed condensation of (S)-2-hydroxy-3-phenylpropionic acid 5 with vari-

^{*} To whom correspondence should be addressed. Tel: (317) 433-1113. Fax: (317) 277-2035.

^{(1) (}a) Liu, K. G.; Smith J. S.; Ayscue, A. H.; Henke, B. R.; Lambert, M. H.; Leesnitzer, L. M.; Plunket, K. D.; Wilson, T. M.; Sternbach, D. D. Bioorg. Med. Chem. Lett. 2001, 11, 2385–2388. (b) Hulin, B.; Newton, L. S.; Lewis, D. M.; Genereux, P. E.; Gibbs, E. M.; Clark, D. A. J. Med. Chem. 1996, 39, 3897-3907. (c) Haigh, D.; Allen, G.; Birrell, H. C.; Buckle, D. R.; Cantello, B. C. C.; Eggleston, D. S.; Haltiwanger, R. C.; Holder, J. C.; Lister, C. A.; Pinto, I. L.; Rami, H. K.; Sime, J. T.; Smith, S. A.; Sweeney, J. D. *Bioorg. Med. Chem.* **1999**, *7*, 821–830. (2) Sakamoto, T.; Kondo, Y.; Kashiwagi, Y.; Yamanaka, K. *Heterocycles* **1988**, *27*, 257–260.

^{(3) (}a) Grell, W.; Machleidt, H. *Liebigs Ann. Chem.* **1966**, *699*, 53–67. (b) Haigh, D. *Tetrahedron* **1994**, *50*, 3177–3194. (c) Haigh, D.; Birrell, H. C.; Cantello, B. C. C.; Hindley, R. M.; Ramaswamy, A.; Rami, H. K.; Stevens, N. C. *Tetrahedron: Asymmetry* **1999**, *10*, 1335–1351. (4) (a) Cox, G. G.; Haigh, D.; Hindley, R. M.; Miller, D. J.; Moody,

C. J. Tetrahedron Lett. 1994, 35, 3139-3142. (b) Haigh, D. Tetrahedron

⁽⁵⁾ Fuson, R. C.; Rachlin, A. I. J. Am. Chem. Soc. 1942, 64, 1567-

^{(6) (}a) Ashby, E. C.; Laemmle, J.; Neumann, H. M. Acc. Chem. Res. 1974, 7, 272–280. (b) Holm, T. Acta Chem. Scand., Ser. B: Org. Chem. Biochem. 1983, B37, 567-584. (c) Maruyama, K.; Katagiri, T. J. Phys. Org. Chem. 1989, 2, 205-213.

^{(7) (}a) Bogdanovic, B. *Angew. Chem., Int. Ed. Engl.* **1985**, *24*, 262– 273. (b) Bogdanovic, B. Acc. Chem. Res. 1988, 21, 261–267.

SCHEME 1

SCHEME 2

SCHEME 3

Condition	Yield
^t BuMgCI	92%(>98%ee)
Sml ₂ /THF	n.r.
Zn/HOAc	n.r.
MgH ₂ /THF	n.r.
LiAIH ₄ , MgCl ₂ /THF	n.r.

ous ketones, aldehydes, or ketals.⁸ Compounds **4a**—**i** were then treated with 'BuMgCl under Fuson's method (Scheme 4)

A review of Table 1 demonstrates that excellent chemical yields were obtained in this reaction when both R^1 and R^2 groups were not α -branched alkyls (entries 1, 3, 5, 6, and 8). When both R^1 and R^2 groups were α -branched alkyls, such as Pr and 2,6-dimethylcyclohexyl, no desired

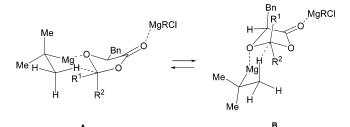


FIGURE 1. Transition state of concerted pathway.

product **1b** or **1d** was isolated (entries 2 and 4). In these cases, only starting material was recovered, even with extended reaction times. In the case where there is only one branched alkyl (i.e., 4g), a 76% yield of 1g was obtained when the reaction was performed on the major cis diastereomer⁹ ($R^1 = {}^{1}\!Pr$, $R^2 = H$) under the standard conditions at 23 °C (entry 7). This reaction was significantly slower at -10 to -20 °C, affording only 28% product 1g with 72% unreacted 4g after 1 h (ratio via ¹H NMR). This result suggests a low conformational energy barrier for the interconversion of transition states **A** and **B** at room temperature. This energy barrier increases dramatically at -10 to -20 °C. Since the cyclopropyl ring is conserved in 1h (88% yield), ionic or radical intermediates are not involved in this transformation.¹⁰ Clearly, the evidence supports the mechanism involving a simultaneous C-O bond breaking and a C-H bond formation under these reaction conditions. Interestingly, the starting dioxalone 4i containing two electronwithdrawing CF₃ groups was inert to BuMgCl (entry 9).

The above methodology provides access to various α -alkoxy carboxylic acids in excellent chemical and

^{(8) (}a) Dutton, F. E.; Lee, B. H. *Tetrahedron Lett.* **1998**, *39*, 5313–5316. (b) Chang, J. W.; Jang, D. P.; Uang, B. J.; Liao, F. L.; Wang, S. L. *Org. Lett.* **1999**, *1*, 2061–2063. (c) Ferrett, R. R.; Hyde, M. J.; Lahti, K. A.; Friebe, T. L. *Tetrahedron Lett.* **2003**, *44*, 2573–2576.

^{(9) (}a) Farines, M.; Soulier, J. Bull. Soc. Chim. Fr. $\bf 1970$, 1, 332–340. (b) The stereochemistry of the major isomer was confirmed by $^1 HNMR$ and NOESY.

⁽¹⁰⁾ The cyclopropyl methyl cation will undergo a facile rearrangement that results in 2-hydroxy acid as the product upon an aqueous workup.

SCHEME 4

TABLE 1. Dioxolanone Ring Opening with 'BuMgCl or $TiCl_4/Et_3SiH$

		yield (%)		
\mathbb{R}^1	\mathbb{R}^2	'BuMgCl	TiCl ₄ / Et ₃ SiH	product
Me	Me	92	91	1a
ⁱ Pr	ⁱ Pr	0	47	1b
cyclohexyl		80	84	1c
2,6-dimethyl- cyclohexyl		0	48	1d
^į Bu	^į Bu	91	93	1e
H	Et	82	89	1f
H	ⁱ Pr	76	67	1g
Me	cyclopropyl	88	0	1ď
CF_3	$\check{\mathrm{CF}}_3$	0	0	1i
	Me Pr cyclohexyl 2,6-dimethyl- cyclohexyl Bu H H Me	Me Me Pr Cyclohexyl 2,6-dimethyl-cyclohexyl Bu Bu H Et H Pr Me cyclopropyl	R ¹ R ² 'BuMgCl Me Me Pr 0 Cyclohexyl 80 2,6-dimethyl- cyclohexyl 'Bu 'Bu 91 H Et 82 H 'Pr 76 Me cyclopropyl 88	R1 R2 BuMgCl Et_3SiH

optical yields. However, α -alkoxy carboxylic acids $\boldsymbol{1}$ when both R^1 and R^2 are α -branched alkyls cannot be prepared, restricting the broader synthetic utility of this procedure.

In an effort to conquer this synthetic challenge, we proposed using a Lewis acid catalyzed reductive ringopening process that would proceed through a less sterically encumbered oxonium ion transition state C (Table 2). Several Lewis acids were evaluated as shown in Table 2. Of the Lewis acids studied, TiCl₄/Et₃SiH provided desired product 1a in the highest chemical yield (entry 1) with >98% ee. A stoichiometric amount of TiCl₄ and a low reaction temperature (-78 °C) were necessary to achieve the optimal chemical yield. The stoichiometric amount of TiCl₄ is required due to the strong Ti-O bond formation. This produces a less Lewis acidic Ti species which terminates the catalytic cycle. The low temperature was necessary to minimize the formation of 5. The weaker Lewis acids SnCl₄, ZrCl₄, and BF₃·Et₂O afforded **1a** in lower chemical yield (32-75%), while Al(ⁱOPr)₃, Ti-(iOPr)4, ZnCl2, and MgCl2 failed to provide any desired product (entries 2–8). Using the trifluoroacetic acid/ Et_3 -SiH, **1a** was obtained in 63% yield (entry 9).

The TiCl₄/Et₃SiH condition was then applied to the other substituted [1,3]dioxolan-4-ones from Table 1. As was the case with 'BuMgCl, excellent chemical yields (67-91%) of **1a**, **1c**, and **1e**-**g** were obtained (entries 1, 3, and 5-7). In contrast to BuMgCl, **1b** and **1d** were obtained in 47–48% yield using TiCl₄/Et₃SiH (entries 2 and 4). Treatment of 4h with TiCl₄/Et₃SiH afforded no desired acid **1h** but only α -hydroxy acid **5**. These results suggest that the TiCl₄/Et₃SiH mediated reaction proceeds through a much less sterically encumbered oxonium ion intermediate C (Table 2). In the case of entry 8, the methyl cyclopropyl cation presumably undergoes a facile rearrangement to a vinyl ether intermediate that can be readily hydrolyzed to α-hydroxy acid **5** upon aqueous workup. Similarly to the ^tBuMgCl conditions, no desired 1i was detected with TiCl₄/Et₃SiH, even when the reaction was performed in refluxing 1,2-dichloroethane (entry 9). The two electron-withdrawing CF₃ groups would be expected to disfavor the oxonium ion formation.

Conclusion. In summary, two complementary approaches to prepare α -alkoxy carboxylic acids have been developed. The substitution of the substrate dictates the method of choice. Excellent chemical and optical yields have been achieved.

Experimental Section

All reagents and solvents were used as received from commercial suppliers. TLC was performed on Keisegel 60 F254 plates (Merck) using reagent grade solvents. Flash chromatography was performed using a Biotage FlashElute system and prepacked silica gel columns. ¹H NMR were performed at 400 MHz and ¹³C NMR at 100 MHz in CDCl₃ or DMSO-d₆.

TABLE 2. Lewis Acid Catalyzed Ring Opening

entry	Lewis acid (equiv)/reductant	T (°C)	yield (%)
1	TiCl ₄ (1.0)/Et ₃ SiH/CH ₂ Cl ₂	-78	91
2	SnCl ₄ (1.0)/Et ₃ SiH/CH ₂ Cl ₂	-78	57
3	ZrCl ₄ (1.0)/Et ₃ SiH/CH ₂ Cl ₂	23	75
4	BF ₃ ·Et ₂ O (1.0)/Et ₃ SiH/CH ₂ Cl ₂	23	$32^{a,b}$
5	$Al(i-OPr)_3$ (3.0)/IPA/CH ₂ Cl ₂	23	n.r.
6	$Ti(i-OPr)_4$ (1.0)/Et ₃ SiH/CH ₂ Cl ₂	23	n.r.
7	ZnCl ₂ (1.0)/Et ₃ SiH/CH ₂ Cl ₂	23	n.r.
8	$MgCl_2(1.0)/Et_3SiH/CH_2Cl_2$	23	n.r.
9	TFA/Ēt ₃ SiĤ	0	63^b

^a Reaction stopped after 5 h. ^b Significant amount of 2-hydroxy-3-phenylpropionic acid 5 formed in the reaction.

Chemical shifts are in ppm downfield from internal tetramethylsilane. LC–MS was performed under two separate conditions, condition A using a YMC ODSA C_{18} 2.0 \times 50 mm 3.0 μ M column, a gradient of 5–100% ACN w/0.2% formic acid in 7.0 min then held at 100% ACN, a column temperature of 50 °C \pm 10, a flow rate of 1 mL/min, a 5 μ L injection volume, and a concentration of \sim 0.3 mg/mL and condition B using an Xterra C_{18} 2.1 \times 50 μ m 3.5 μ M column, a gradient of 5–100% ACN/MeOH (50:50) w/0.2% ammonium formate in 7.0 min then held at 100% ACN/MeOH (50:50) for 1.0 min, a column temperature of 50 °C \pm 10, a flow rate of 1 mL/min, a 5 μ L injection volume, and a concentration of \sim 0.3 mg/mL.

(S)-5-Benzyl-2,2-dimethyl[1,3]dioxolan-4-one (4a). L-3-Phenyllactic acid (4.0 g, 24.1 mmol), 2,2-dimethoxypropane (20 g, 0.192 mol), and pyrididium p-toluenesulfonate (3.02 g, 12.0 mmol) in chloroform (40 mL) was heated to reflux for 1 h under N₂. The reaction was cooled, diluted with water, and extracted with CH₂Cl₂. The organic layer was dried (Na₂SO₄) and the solvent removed in vacuo to give crude product that was purified by flash chromatography using 10:1 hexanes/acetone to afford 4.38 g (88%) (S)-5-benzyl-2,2-dimethyl[1,3]dioxolan-4-one **4a**: $[\alpha]^{20}_D$ -56.0 (*c* 1.00, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.29 (m, 2H), 7.26-7.23 (m, 3H), 4.66 (dd, 1H, J = 6.36, 3.91 Hz), 3.19 (dd, 1H, J = 14.18, 3.91 Hz), 3.05 (dd, 1H, J = 14.18, 6.36 Hz), 1.50 (s, 3H), 1.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 135.8, 129.8, 128.3, 127.0, 110.8, 75.0, 37.6, 26.9, 26.1; IR (KBr) 3023, 1788, 1498, 1455, 1389, 1381, 1283, 1261, 1224, 1123; HRMS (EI⁺) m/z exact mass calcd for $C_{12}H_{14}O_3$ (M + 1) 206.0943, found m/z 206.0967. Anal. Calcd for C₁₂H₁₄O₃: C, 69.88; H, 6.84. Found: C, 69.56; H, 6.68.

(*S*)-5-Benzyl-2,2-diisopropyl[1,3]dioxolan-4-one (4b). L-3-Phenyllactic acid reacted with 2,4-dimethyl-3-pentanone using the standard procedure for 4a to afford 1.43 g (36%) of (*S*)-5-benzyl-2,2-diisopropyl[1,3]dioxolan-4-one 4b: $[\alpha]^{20}_D$ –45.9 (*c* 1.09, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.23 (m, 5H), 4.61 (dd, 1H, J= 9.29, 3.42 Hz), 3.16 (dd, 1H, J= 14.67, 3.42 Hz), 3.01 (dd, 1H, J= 14.67, 9.29 Hz), 2.27–2.15 (m, 2H), 0.97 (d, 6H, J= 6.85 Hz), 0.97 (d, 6H, J= 6.85 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 137.1, 129.4, 128.8, 127.1, 117.6, 77.1, 38.6, 34.9, 32.8, 16.9, 16.8, 16.4. IR (KBr) 3031, 2978, 2941, 2884, 1783, 1604, 1498, 1475, 1271, 1245, 1145, 1104, 1036, 945; HRMS (EI⁺) m/z exact mass calcd for C₁₆H₂₂O₃ (M + 1) 263.1647, found m/z 263.1655.

(S)-3-Benzyl-1,4-dioxaspiro[4.5]decan-2-one (4c). A - 50°C mixture of L-3-phenyllactic acid (1.5 g, 9.02 mmol) in Et₂O (15 mL) was treated with boron trifluoroide diethyl etherate (2.05 g, 1.44 mmol), and then a solution of cyclohexanone dimethyl ketal (1.30 g, 9.01 mmol) in CH₂Cl₂ (7 mL) was added dropwise over 10 min. The resultant solution was stirred at -50 °C for under N_2 for 1 h and was then quenched with triethylamine (5.4 mL). The reaction mixture was poured into ice-water and extracted with Et₂O. The organic layer was dried (Na₂SO₄) and the solvent removed in vacuo to give crude product that was purified by flash chromatography using 15:1 hexanes/acetone to afford 1.92 g (86%) of (S)-3-benzyl-1,4dioxaspiro[4.5]decan-2-one **4c**: $[\alpha]^{20}_D$ -30.9 (*c* 1.36, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.26–7.16 (m, 5H), 4.58 (dd, 1H, J = 6.36, 4.40 Hz), 3.12 (dd, 1H, J = 14.18, 3.91 Hz), 2.97 (dd, 1H, J = 14.18, 6.36 Hz), 1.71–1.34 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 135.9, 129.8, 128.3, 126.9, 111.6, 74.5, 37.8, 36.5, 35.7, 24.2, 23.0, 22.9; IR (KBr) 3032, 2945, 2860, 1787, 1498, 1451, 1372, 1224, 1219, 1213, 1155, 1113; HRMS (TOF EI⁺) m/z exact mass calcd for $C_{15}H_{18}O_3$ 246.1256, found m/z 246.1252.

(*S*)-3-Benzyl-6,10-dimethyl-1,4-dioxaspiro[4.5]decan-2-one (4d). L-3-Phenyllactic acid reacted with 2,6-dimethylcyclohexanone (this material is \sim 80:20 mixture of cis/trans isomers as supplied by Aldrich) using the standard procedure for 4a to afford 1.43 g (36%) (*S*)-3-benzyl-6,10-dimethyl-1,4-dioxaspiro[4.5]decan-2-one 4d as a mixture of diasteriomers: [α]²⁰_D -40.3 (c 0.992, MeOH); ¹H NMR (400 MHz, CDCl₃) δ

7.35–7.22 (m, 5H), 4.66–4.58 (m 1H), 3.19–3.14 (m, 1H), 3.13–2.99 (m, 1H), 2.08–1.24 (m, 8H), 0.93 (isomer 1, d, 3H, J= 6.85 Hz), 0.86 (isomer 2, d, 2 H, J= 6.85 Hz), 0.79 (isomer 2, d, 1H, J= 6.85 Hz); IR (KBr) 3569, 3091, 3060, 3029, 2970, 2937, 2855, 1793, 1602, 1494, 1455, 1371, 1274, 1248, 1226, 1200, 1157, 1106, 945, 744, 699; HRMS (EI⁺) m/z exact mass calcd for $C_{17}H_{22}O_3$ (M + Na) 297.1467, found m/z 297.1469.

(*S*)-5-Benzyl-2,2-diisobutyl[1,3]dioxolan-4-one (4e). L-3-Phenyllactic acid was reacted with 2,6-dimethyl-4-heptanone using the standard procedure for 4b to afford 1.61 g (37%) of (*S*)-5-benzyl-2,2-diisobutyl-[1,3]dioxolan-4-one 4e: $[\alpha]^{20}_{\rm D}$ –26.1 (*c* 1.05, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.32 (m, 2H), 7.30–7.22 (m, 3H), 4.59 (dd, 1H, J = 7.33, 3.91 Hz), 3.19 (dd, 1H, J = 14.67, 3.91 Hz), 3.05 (dd, 1H, J = 14.67, 7.33 Hz), 1.76 (hp, 1H, J = 6.35 Hz), 1.70–1.49 (m, 5H), 0.92 (t, 6H, J = 6.35 Hz), 0.87 (q, 6H, J = 6.35 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 136.2, 129.6, 128.4, 126.9, 114.4, 74.9, 46.1, 46.0, 23.9, 23.8, 23.7, 23.6, 23.4; IR (KBr) 3029, 2957, 2927, 2872, 1793, 1499, 1468, 1455, 1369, 1306, 1222, 1131, 1099, 946, 699; HRMS (EI+) m/z exact mass calcd for C₁₈H₂₆O₃ (M + 1) 291.1960, found m/z 291.1960.

(S)-5-Benzyl-2-ethyl[1,3]dioxolan-4-one (4f). L-3-Phenyllactic acid (2.5 g, 15.0 mmol) was reacted with propionaldehyde using the standard procedure for 4a to afford 2.54 g (82%) of (S)-5-benzyl-2-ethyl[1,3]dioxolan-4-one as a 3:2 mixture of diasteriomers **4f**: $[\alpha]^{20}$ _D -62.1 (c 1.03, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.30 (m, 2H, isomers 1 and 2), 7.29– 7.23 (m, 3H, isomers 1 and 2), 5.46 (t, 1H, J = 4.40 Hz, isomer 1), 5.23 (t, 2 H, J = 4.40 Hz, isomer 2), 4.65 (t, 1 H, J = 4.40Hz, isomer 2), 4.50 (dd, 1H, J = 7.34, 3.42 Hz, isomer 1), 3.23 (dd, 1H, J = 14.67 Hz, J = 3.91 Hz, isomer 1), 3.15 (dd, 1 H, J = 14.18 Hz, J = 4.40 Hz, isomer 2, 3.09-3.01 (m, 2 H,isomers 1 and 2), 1.76-1.66 (m, 4H, isomers 1 and 2), 0.93 (t, 3 H, J = 7.34 Hz, isomer 2), 0.90 (t, 3 H, J = 7.34 Hz, isomer 1); 13 C NMR (100 MHz, CDCl₃) δ 172.8, 135.5, 129.6, 128.9, 127.2, 106.3, 75.2, 37.0, 27.9, 6.7 (isomer 1), 172.6, 135.9, 129.6, 128.7, 127.1, 105.2, 75.7, 36.9, 27.0, 6.6 (isomer 2); IR (KBr) 3028, 3019, 1792, 1604, 1497, 1455, 1224, 1200, 1191, 1118, 951; HRMS (EI⁺) m/z exact mass calcd for $C_{12}H_{14}O_3$ (M + 1) 206.0943, found m/z 206.0944.

(S)-5-Benzyl-2-isopropyl[1,3]dioxolan-4-one (4g). L-3-Phenyllactic acid was reacted with isobutyraldehyde using the standard procedure for 4a to afford 1.71 g (60%) of (S)-5benzyl-2-isopropyl[1,3]dioxolan-4-one as a 4:1 mixture of diasteriomers **4g**: $[\alpha]^{20}$ _D -42.7 (*c* 1.03, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.23 (m, 5H, isomers 1 and 2), 5.24 (d, 1H, J = 4.40 Hz, isomer 1), 5.01 (d, 1 H, J = 3.91 Hz, isomer 2), 4.64-4.61 (m, 1 H, isomer 2), 4.49 (dd, 1H, J = 7.34, 3.91Hz, isomer 1), 3.22 (dd, 1H, J = 14.67, 3.91 Hz, isomer 1), 3.14 (dd, 1 H, J = 14.18, 4.40 Hz, isomer 2), 3.08–3.01 (m, 2 H, isomers 1 and 2), 1.90-1.78 (m, 2H, isomers 1 and 2), 0.91 (d, 3 H, J = 6.85 Hz, isomer 2), 0.89 (d, 3 H, J = 6.85 Hz, isomer 1); ¹³C NMR (100 MHz, CDCl₃) δ 172.81, 172.6, 135.9, 135.5, 129.7, 129.6, 128.5, 128.4, 127.1, 126.9, 108.8, 107.7, 75.6, 75.3, 37.1, 36.8, 32.8, 31.8, 15.7, 15.6, 15.5, 15.4; IR (KBr) 3030, 2970, 2933, 2880, 1792, 1604, 1497, 1472, 1455, 1406, 1187, 956; HRMS (EI⁺) m/z exact mass calcd for $C_{13}H_{16}O_3$ (M + 1) 220.1099, found *m*/*z* 220.1082.

(*S*)-5-Benzyl-2-cyclopropyl-2-methyl[1,3]dioxolan-4-one (4h). L-3-Phenyllactic acid was reacted with cyclopropyl methyl ketone using the standard procedure for 4a to afford 1.74 g (62%) of a 2:1 mixture of (*S*)-5-benzyl-2-cyclopropyl-2-methyl[1,3]dioxolan-4-one diasteriomers 4h: [α]²⁰_D -40.3 (*c* 1.30, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.23 (m, 5H), 4.65-4.62 (m, 1H), 3.18-3.14 (m, 1H), 3.12-2.97 (m, 1H), 1.28 (s, 3H), 1.20-1.11 (m, 1 H), 0.51-0.39 (m, 4 H) (isomer 1), 7.32-7.23 (m, 5H), 4.56 (dd, 1H, J=7.34, 3.91 Hz), 3.18-3.14 (m, 1H), 3.12-2.97 (m, 1H), 1.52 (s, 3H), 1.20-1.11 (m, 1 H), 0.51-0.39 (m, 4 H) (isomer 2); ¹³C NMR (100 MHz, CDCl₃) δ, 172.8, 135.7, 129.9, 128.4, 127.1, 76.0, 37.98, 25.9, 19.2, 1.5 (isomer 1), 172.4, 135.9, 129.7, 128.5, 127.0, 74.6, 37.4, 24.9, 18.5, 1.3 (isomer 2); IR (KBr) 1788, 1380, 1282, 1259, 1237,

1115; HRMS (TOF MS EI $^+$) m/z exact mass calcd for $C_{14}H_{16}O_3$ (M + 1) 232.1099, found m/z 232.1127.

(S)-5-Benzyl-2,2-bis-trifluoromethyl[1,3]dioxolan-4one (4i). A solution of L-3-phenyllactic acid (2.0 g, 12.0 mmol) in dry DMSO (30 mL) was prepared in a flame-dried flask fitted with a dry ice condenser. Hexafluoroacetone was bubbled into the reaction solution for approximately 10 min, and the resultant solution was stirred at room temperature for 1.5 h under N2. The reaction mixture was poured into water and extracted with CH2Cl2. The organic layer was dried (Na2SO4) and the solvent removed in vacuo to give crude product that was purified by flash chromatography using 12:1 hexanes/ acetone to afford 3.32 g (88%) (S)-5-benzyl-2,2-bis-trifluoromethyl[1,3]dioxolan-4-one **4i**: $[\alpha]^{20}_D$ -45.2 (c 0.930, MeOH); 1H NMR (400 MHz, CDCl $_3$) δ 7.38-7.28 (m, 3H), 7.25-7.22 (m, 2H), 4.85 (dd, 1H, J = 8.1, 4.2 Hz), 3.28 (dd, 1H, J = 14.9, 4.2 Hz), 3.13 (dd, 1H, J = 14.9, 8.1 Hz); ¹³C NMR (100 MHz, DMSO- d_6) δ 167.2, 133.79, 129.48, 127.91, 127.27, 75.58, 36.22; IR (KBr) 1847, 1321, 1242, 1188, 1133, 983; HRMS (TOF EI+) m/z exact mass calcd for $C_{12}H_8O_3F_6$ 314.0378, found m/z

Representative 'BuMgCl Procedure To Prepare 1a. A solution of (S)-5-benzyl-2,2-dimethyl[1,3]dioxolan-4-one (0.20 g, 0.97 mmol) in dry Et₂O (1 mL) was treated dropwise with a 2 M solution of tert-butylmagnesium chloride in Et₂O (1.45 mL, 2.90 mmol) under N₂. The resultant solution was stirred at room temperature for 30 min and then quenched with 1 N HCl. The mixture was extracted with EtOAc, and the organic layer was dried (Na₂SO₂). The organic layer was filtered and the solvent was removed in vacuo to give crude product that was purified by flash chromatography using 6:1 hexanes/ acetone to afford 0.185 g (92%) of (S)-2-isopropoxy-3-phenylpropionic acid **1a**: $[\alpha]^{20}$ _D -42.0 (c 1.00, MeOH); ¹H NMR (400 MHz, DMSO- d_6) δ 12.50 (bs, 1H), 7.26–7.15 (m, 5H), 4.02 (dd, 1H, J = 8.32, 4.89 Hz), 3.47 (hp, 1H, J = 5.87 Hz), 2.91 (dd, 1H, J = 14.18, 4.89 Hz), 2.77 (dd, 1H, J = 13.69, 8.32 Hz), 1.02 (d, 3H, J = 5.87 Hz), 0.85 (d, 3H, J = 5.87 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 137.2, 129.8, 128.5, 127.0, 78.0, 73.4, 39.6, 22.5, 21.7; IR (KBr) 3032, 2977, 2931, 1770, 1723, 1599, 1455, 1379, 1334, 1313, 1140, 1116, 1087; HRMS (TOF ES⁻) m/z exact mass calcd for $C_{12}H_{16}O_3$ (M - 1) 207.1021, found m/z 207.1001; LC-MS condition A: purity 100%, t_R = 3.25 min; condition B: purity 100%, $t_R = 3.74$ min.

Representative TiCl₄/Et₃SiH Procedure To Prepare 1a. A -78 °C solution of (*S*)-5-benzyl-2,2-dimethyl[1,3]dioxolan-4-one (0.20 g, 0.97 mmol) and triethylsilane (0.34 g, 2.92 mmol) in CH₂Cl₂ (8 mL) was treated dropwise with a 1 M solution of TiCl₄ in CH₂Cl₂ (0.97 mL, 0.97 mmol) under N₂. The resultant solution was stirred at -78 °C for 20 min and then quenched with water. The mixture was extracted with EtOAc, and the organic layer was dried (Na₂SO₂). The organic layer was filtered, and the solvent was removed in vacuo to give crude product that was purified by flash chromatography using 6:1 hexanes/:acetone to afford 0.183 g (91%) of (*S*)-2-isopropoxy-3-phenylpropionic acid **3a**.

(*S*)-2-(1-Isopropyl-2-methylpropoxy)-3-phenylpropionic acid (1b): $[\alpha]^{20}_D$ -42.7 (c 0.97, MeOH); 1 H NMR (400 MHz, DMSO- d_6) δ 12.50 (bs, 1H), 7.26–7.15 (m, 5H), 4.00 (t, 1H, J= 6.85 Hz), 2.92–2.88 (m, 3H), 1.73–1.66 (m, 2H), 0.84 (d, 6H, J= 6.85 Hz), 0.73 (d, 3H, J= 6.85 Hz), 0.69 (d, 3H, J= 6.85 Hz); 13 C NMR (100 MHz, CDCl₃) δ 177.1, 136.6, 129.8, 128.6, 127.0, 90.6, 77.6, 39.6, 30.3, 20.5, 20.1, 18.6, 18.4; IR (KBr) 3032, 2964, 2934, 2875, 1770, 1722, 1604, 1497, 1455, 1099, 1085; HRMS (TOF ES⁻) m/z exact mass calcd for $C_{16}H_{24}O_3$ (M - 1) 263.1647, found m/z 263.1663; LC-MS condition A: purity 100%, t_R = 4.70 min; condition B: purity 100%, t_R = 5.53 min.

(*S*)-2-Cyclohexyloxy-3-phenylpropionic acid (1c): $[\alpha]^{20}_{\rm D}$ –45.7 (c 0.950, MeOH); $^1{\rm H}$ NMR (400 MHz, DMSO- d_6) δ 12.60 (bs, 1H), 7.26–7.15 (m, 5H), 4.05 (dd, 1H, J = 8.80, 4.40 Hz), 3.21–3.16 (m, 1H), 2.92 (dd, 1H, J = 13.69, 4.40 Hz), 2.77 (dd, 1H, J = 13.69, 8.80 Hz), 1.73–1.65 (m, 1H), 1.62–1.49 (m, 2H),

1.42-1.31 (m, 2H), 1.28-0.92 (m, 5H); ^{13}C NMR (100 MHz, CDCl $_3$) δ 177.52, 137.3, 129.8, 128.5, 126.9, 78.9, 39.6, 32.7, 31.6, 25.7, 24.1, 23.9; IR (KBr) 3027, 2937, 2860, 1769, 1722, 1603, 1452, 1337, 1108, 108; HRMS (TOF ES $^-$) $\emph{m/z}$ exact mass calcd for $C_{15}H_{19}O_3$ (M - 1) 247.1334, found $\emph{m/z}$ 247.1312; LC $^-$ MS condition A: purity 100%, $\emph{t}_R=4.67$ min; condition B: purity 100%, $\emph{t}_R=4.77$ min.

(*S*)-2-(2,6-Dimethylcyclohexyloxy)-3-phenylpropionic acid (1d): $[\alpha]^{20}_{\rm D}-51.7$ (c 1.03, MeOH); ¹H NMR (400 MHz, DMSO- d_6) δ 7.30–7.21 (m, 5H, isomers 1 and 2), 4.31–4.26 (m, 1H, isomers 1 and 2), 3.17–3.11 (m, 1H isomers 1 and 2), 3.06–2.99 (m, 2H isomers 1 and 2), 2.05–1.90 (m, 1H), 1.80–1.60 (m, 2H), 1.47–1.25 (m, 5H), 0.055 (t, 3H, J=7.0 Hz), 0.81 (d, 2 H, J=7.0 Hz, isomer 2), 0.65 (d, 2H, J=7.0 Hz, isomer 2); IR (KBr) 3024, 2927, 2860, 2665, 2531, 1720, 1602, 1494, 1453, 1278, 1232, 1110, 970, 698; HRMS (TOF ES⁺) m/z exact mass calcd for $C_{17}H_{24}O_3$ (M + Na) 299.1624, found m/z 299.1620; LC–MS purity 94:6 mixture of diasteriomers, t_R (94% component) = 3.75 min, t_R (6% component) = 3.62 min.

(S)-2-(1-Isobutyl-3-methylbutoxy)-3-phenylpropionic acid (1e): $[\alpha]^{20}_{\rm D}$ –42.8 (c 1.05, MeOH); $^1{\rm H}$ NMR (400 MHz, DMSO- d_6) δ 12.60 (bs, 1H), 7.26–7.15 (m, 5H), 3.98 (dd, 1H, J = 7.83 Hz, J = 5.38), 3.31–3.27 (m, 1H), 2.89 (dd, 1H, J = 13.69 Hz, J = 5.38 Hz), 2.77 (dd, 1H, J = 13.69 Hz, J = 7.83 Hz), 1.74–1.67 (m, 1H), 1.41–1.26 (m, 2H), 1.18–1.08 (m, 2H), 1.02–0.93 (m, 1H), 0.79 (d, 6H, J = 6.85 Hz), 0.71 (d, 3H, J = 6.85 Hz), 0.66 (d, 3H, J = 6.36 Hz); $^{13}{\rm C}$ NMR (100 MHz, CDCl $_3$) δ 177.6, 136.9, 129.8, 128.6, 127.0, 78.5, 78.2, 44.1, 43.6, 39.9, 24.7, 24.4, 23.1, 23.08, 23.0, 22.8; IR (KBr) 3071, 3031, 2956, 2869, 1722, 1607, 1497, 1467, 1455, 1386, 1367, 1288, 1236, 1201, 1109, 1037, 1011, 979, 753, 698; HRMS (TOF ES⁻) m/z exact mass calcd for C $_{18}H_{28}O_3$ (M + Na) 315.1936, found m/z 315.1925; LC—MS condition A: purity 100%, t_R = 5.30 min, condition B: purity 100%, t_R = 6.01 min.

(*S*)-3-Phenyl-2-propoxypropionic acid (1f): $[\alpha]^{20}_D-40.6$ (c 1.28, MeOH); 1H NMR (400 MHz, DMSO- d_6) δ 12.60 (bs, 1H), 7.27–7.15 (m, 5H), 3.95 (dd, 1H, J= 8.32, 4.89 Hz), 3.45–3.40 (m, 1H), 3.18–3.12 (m, 1H), 2.94 (dd, 1H, J= 13.69, 4.40 Hz), 2.83 (dd, 1H, J= 13.69, 8.32 Hz), 1.40 (hex, 2H, J= 7.34 Hz), 0.73 (t, 3H, J= 7.34 Hz); 13 C NMR (100 MHz, CDCl₃) δ 177.7, 137.1, 129.7, 128.6, 127.0, 80.1, 73.2, 39.2, 23.0, 10.6; IR (KBr) 3031, 2967, 2935, 2878, 1769, 1722, 1456, 1334, 1115; HRMS (TOF ES-) m/z exact mass calcd for $C_{12}H_{15}O_3$ (M - 1) 207.1021, found m/z 207.1014; LC-MS condition A: purity 100%, t_R = 3.38 min; condition B: purity 100%, t_R = 3.85 min.

(*S*)-2-Isobutoxy-3-phenylpropionic acid (1g): $[\alpha]^{20}_D-43.9$ (c 1.14, MeOH); 1H NMR (400 MHz, DMSO- d_6) δ 12.60 (bs, 1H), 7.27–7.15 (m, 5H), 3.93 (dd, 1H, J=8.32 Hz, J=4.89 Hz), 3.28–3.24 (m, 1H), 2.97–2.92 (m, 2H), 2.82 (dd, 1H, J=13.69, 8.32 Hz), 1.66 (hept, 1H, J=6.85 Hz), 0.72 (d, 6H, J=6.85 Hz); 13 C NMR (100 MHz, CDCl₃) δ 177.6, 137.2, 129.8, 128.5, 126.9, 80.3, 78.3, 39.2, 28.7, 19.4, 19.3; IR (KBr) 3032, 2960, 2931, 2911, 2874, 1770, 1724, 1368, 1112, 1098; HRMS (TOF ES⁻) m/z exact mass calcd for $C_{13}H_{17}O_3$ (M – 1) 221.1178, found m/z 221.1175; LC–MS condition A: purity 100%, $t_R=3.83$ min; condition A: purity 100%, $t_R=3.83$ min; condition A: purity 100%, $t_R=3.83$

(*S*)-2-(1-Cyclopropylethoxy)-3-phenylpropionic acid (1h): $[\alpha]^{20}_D$ -33.1 (c 0.967, MeOH); 1 H NMR (400 MHz, DMSO- d_6) δ 12.63 (bs, 1H, isomers 1 and 2), 7.27–7.15 (m, 5H, isomers 1 and 2), 4.43 (dd, 1H, J = 8.31, 4.89 Hz, isomer 1), 4.17 (dd, 1H, J = 8.80, 4.89 Hz, isomer 2), 3.09–3.02 (m, 1H, isomers 1 and 2), 2.98–2.84 (m, 1H, isomers 1 and 2), 1.23 (d, 3H, J = 6.36 Hz, isomer 1), 1.08 (d, 3H, J = 6.36 Hz, isomer 2), 0.90–0.85 (m, 1H, isomer 1), 0.69–0.63 (m, 1H, isomer 2), 0.52–0.35 (m, 2H, isomers 1 and 2), 0.29–0.18 (m, 1H, isomer 1), 0.06–0.00 (m, 1H, isomer 2); 13 C NMR (100 MHz, CDCl₃) δ 176.5, 136.2, 128.8, 127.5, 126.0, 81.4, 77.5, 38.7, 19.8, 15.8, 4.1, 0.6 (isomer 1), 176.25, 136.1, 128.7, 127.4, 125.9, 80.2, 76.2, 38.6, 19.1, 15.1, 4.0, 0.0 (isomer 2); IR (KBr) 3010, 2978, 1769, 1722, 1455, 1377, 1363, 1334, 1102, 1085; HRMS (FAB +) m/z

CArticle (

exact mass calcd for $C_{14}H_{19}O_3$ (M + 1) 235.1334, found $\emph{m/z}$ 235.1338.

Acknowledgment. We thank Professor Marvin Miller, Dr. Mary Peters, Dr. Kenneth Henry, and Dr. Sreenivasa Mundla for helpful discussions during the course of this work. We also acknowledge Mr. Alan De La Vega, a summer ACS SEED student, who prepared several of the dioxolanones for this study. The LC-MS support provided by Mr. Lawrence Goodwin is also gratefully acknowledged.

Supporting Information Available: ¹H NMR spectra for 1a-h and 4a-h and ¹³C NMR spectra for 1a-h. This material is available free of charge via the Internet at http://pubs.acs.org. JO049784F